21,021 research outputs found

    On the correlation between radio and X-ray flux in Low/Hard state Black Holes

    Full text link
    Radio emission from X-ray binary systems (XRBs) has developed in recent years from being peculiar phenomenon to being recognised as an ubiquitous property of several classes of XRBs. In this scenario the synchrotron emission is interpreted as the radiative signature of jet-like outflows, some or all of which may possess relativistic bulk motion. We have analysed a collection of quasi-simultaneous radio/X-ray observations of Black Holes in the Low/Hard X-ray state, finding evidence of a clear correlation between their fluxes over many orders of magnitude in luminosity. Given that the correlation extends down to GX 339-4 and V404 Cyg in quiescence, we can confidently assert that even at accretion rates as low as ~ 10^{-5} dot{m}_{Edd} a powerful jet is being formed. The normalisation of the correlation is very similar across a sample of nine sources, implying that it is nearly independent of jet inclination angle. Remarkably, V 404 Cyg is the second source (after GX 339-4) to show the correlation S_{radio} proportional to S_{X}^{+0.7} from quiescent level up to close to the High/Soft state transition. Moreover, assuming the same physics and accretion:outflow coupling for all of these systems, the simplest interpretation for the observed scenario is that outflows in Low/Hard state do not have large bulk Lorentz factors.Comment: 4 pages, 3 figures, Proceedings of the 4th Microquasar Workshop, eds. Ph Durouchoux, Y. Fuchs and J. Rodriguez, published by the Center for Space Physics: Kolkat

    The resupply interface mechanism RMS compatibility test

    Get PDF
    Spacecraft on-orbit servicing consists of exchanging components such as payloads, orbital replacement units (ORUs), and consumables. To accomplish the exchange of consumables, the receiving vehicle must mate to the supplier vehicle. Mating can be accomplished by a variety of docking procedures. However, these docking schemes are mission dependent and can vary from shuttle bay berthing to autonomous rendezvous and docking. Satisfying the many docking conditions will require use of an innovative docking device. The device must provide fluid, electrical, pneumatic and data transfer between vehicles. Also, the proper stiffness must be obtained and sustained between the vehicles. A device to accomplish this, the resupply interface mechanism (RIM), was developed. The RIM is a unique device because it grasps the mating vehicle, draws the two vehicles together, simultaneously mates all connectors, and rigidizes the mating devices. The NASA-Johnson Manipulator Development Facility was used to study how compatible the RIM is to on orbit docking and berthing. The facility contains a shuttle cargo bay mockup with a remote manipulator system (RMS). This RMS is used to prepare crew members for shuttle missions involving spacecraft berthing operations. The MDF proved to be an excellant system for testing the RIM/RMS compatibility. The elements examined during the RIM JSC test were: RIM gross and fine alignment; berthing method sequence; visual cuing aids; utility connections; and RIM overall performance. The results showed that the RIM is a good device for spacecraft berthing operations. Mating was accomplished during every test run and all test operators (crew members) felt that the RIM is an effective device. The purpose of the JSC RIM test and its results are discussed

    An alternative method of analysis for base accelerated dynamic response in NASTRAN

    Get PDF
    An alternative method of analysis to determine the dynamic response of structures subjected to base accelerations is presented. The method is exact as opposed to the approximate technique of using unusually large masses and loads to enforce desired base accelerations. This paper presents the relevant equations to motion, ALTERs for direct and modal frequency-, random- and transient-response rigid formats, and illustrative examples

    Probing the geometry and motion of AGN coronae through accretion disc emissivity profiles

    Get PDF
    To gain a better understanding of the inner disc region that comprises active galactic nuclei it is necessary to understand the pattern in which the disc is illuminated (the emissivity profile) by X-rays emitted from the continuum source above the black hole (corona). The differences in the emissivity profiles produced by various corona geometries are explored via general relativistic ray tracing simulations. Through the analysis of various parameters of the geometries simulated it is found that emissivity profiles produced by point source and extended geometries such as cylindrical slabs and spheroidal coronae placed on the accretion disc are distinguishable. Profiles produced by point source and conical geometries are not significantly different, requiring an analysis of reflection fraction to differentiate the two geometries. Beamed point and beamed conical sources are also simulated in an effort to model jet-like coronae, though the differences here are most evident in the reflection fraction. For a point source we determine an approximation for the measured reflection fraction with the source height and velocity. Simulating spectra from the emissivity profiles produced by the various geometries produce distinguishable differences. Overall spectral differences between the geometries do not exceed 15 per cent in the most extreme cases. It is found that emissivity profiles can be useful in distinguishing point source and extended geometries given high quality spectral data of extreme, bright sources over long exposure times. In combination with reflection fraction, timing, and spectral analysis we may use emissivity profiles to discern the geometry of the X-ray source.Comment: 15 pages, 12 figures. Accepted for publication in MNRA

    Acoustical modes of arbitrary volumes using NASTRAN transient heat transfer RF9

    Get PDF
    An equivalence between temperature and pressure, heat conduction and stiffness and heat capacity and mass is defined, enabling acoustical modal analysis of arbitrary three dimensional volumes. The transient heat transfer analysis rigid format in NASTRAN, RF9, has been altered providing the acoustical analysis capability. Examples and ALTERs are included

    New high-performance liquid chromatography-dad method for analytical determination of arbutin and hydroquinone in rat plasma

    Get PDF
    Natural substances present in herbal preparations should be carefully used because they can give toxic or therapeutic effects despite of their amount or the way of administration. The safety of products of vegetable origin must be assessed before commercialisation by monitoring the active ingredients and their metabolites. This study was therefore designed to identify and quantify arbutin and its metabolite hydroquinone, naturally present in Arctostaphylos uva-ursi (L.) Spreng plant in rat plasma, after an acute and subacute administration of aqueous arbutin solution in Wistar rats. For this purpose a reversed-phase high-performance liquid chromatography coupled with photodiode array detection was developed to assess the pharmacokinetic of arbutin and hydroquinone in plasma of female rats treated with aqueous arbutin solutions. The detection (arbutin: 0.0617 µg/ml and hydroquinone 0.0120 µg/ml) and quantification (arbutin: 0.2060 µg/ml and hydroquinone: 0.0400 µg/ml) limits were determined. At the arbutin concentration level of 10.7 µg/ml repeatability was 13.33% and its recovery 93.4±6.93%, while at the hydroquinone concentration level of 10.6 µg/ml repeatability was 11.66% and its recovery 92.9±7.75%. Furthermore the method was fully validated and the obtained data indicate that the new method provides good performances

    Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose

    Get PDF
    In order to investigate the cryoprotective mechanism of trehalose on proteins, we use molecular dynamics computer simulations to study the microscopic dynamics of water upon cooling in an aqueous solution of lysozyme and trehalose. We find that the presence of trehalose causes global retardation of the dynamics of water. Comparing aqueous solutions of lysozyme with/without trehalose, we observe that the dynamics of water in the hydration layers close to the protein is dramatically slower when trehalose is present in the system. We also analyze the structure of water and trehalose around the lysozyme and find that the trehalose molecules form a cage surrounding the protein that contains very slow water molecules. We conclude that the transient cage of trehalose molecules that entraps and slows the water molecules prevents the crystallisation of protein hydration water upon cooling.DC, EGS, and HES thank the NSF chemistry Division for support (Grants CHE-1213217, CHE-0911389, and CHE-0908218). PG gratefully acknowledges the computational support reveived by the INFN RM3-GRID at Roma Tre University. (CHE-1213217 - NSF chemistry Division; CHE-0911389 - NSF chemistry Division; CHE-0908218 - NSF chemistry Division)Published versio

    Wearable Platform for Automatic Recognition of Parkinson Disease by Muscular Implication Monitoring

    Get PDF
    The need for diagnostic tools for the characterization of progressive movement disorders - as the Parkinson Disease (PD) - aiming to early detect and monitor the pathology is getting more and more impelling. The parallel request of wearable and wireless solutions, for the real-time monitoring in a non-controlled environment, has led to the implementation of a Quantitative Gait Analysis platform for the extraction of muscular implications features in ordinary motor action, such as gait. The here proposed platform is used for the quantification of PD symptoms. Addressing the wearable trend, the proposed architecture is able to define the real-time modulation of the muscular indexes by using 8 EMG wireless nodes positioned on lower limbs. The implemented system “translates” the acquisition in a 1-bit signal, exploiting a dynamic thresholding algorithm. The resulting 1-bit signals are used both to define muscular indexes both to drastically reduce the amount of data to be analyzed, preserving at the same time the muscular information. The overall architecture has been fully implemented on Altera Cyclone V FPGA. The system has been tested on 4 subjects: 2 affected by PD and 2 healthy subjects (control group). The experimental results highlight the validity of the proposed solution in Disease recognition and the outcomes match the clinical literature results
    corecore